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Simple Summary: This article integrated analyses of the microbial and metabolic characteristics of
gastric cancer (GC), as well as their coexistence relationship, and determined the microbial-related
metabolites diagnostic markers. Our study provides a direction for finding microbial-related metabolic
diagnostic markers of GC and may provide a basis for further understanding and exploring the
coexistence and interaction mechanisms of microbe and metabolites in GC.

Abstract: Metabolites associated with microbes regulate human immunity, inhibit bacterial coloniza-
tion, and promote pathogenicity. Integrating microbe and metabolome research in GC provides a
direction for understanding the microbe-associated pathophysiological process of metabolic changes
and disease occurrence. The present study included 30 GC patients with 30 cancerous tissues and
paired non-cancerous tissues (NCs) as controls. LC-MS/MS metabolomics and 16S rRNA sequencing
were performed to obtain the metabolic and microbial characteristics. Integrated analysis of the mi-
crobes and metabolomes was conducted to explore the coexistence relationship between the microbial
and metabolic characteristics of GC and to identify microbial-related metabolite diagnostic markers.
The metabolic analysis showed that the overall metabolite distribution differed between the GC
tissues and the NC tissues: 25 metabolites were enriched in the NC tissues and 42 metabolites were
enriched in the GC tissues. The α and β microbial diversities were higher in the GC tissues than in
the NC tissues, with 11 differential phyla and 52 differential genera. In the correlation and coexistence
integrated analysis, 66 differential metabolites were correlated and coexisted, with specific differential
microbes. The microbes in the GC tissue likely regulated eight metabolic pathways. In the efficacy
evaluation of the microbial-related differential metabolites in the diagnosis of GC, 12 differential
metabolites (area under the curve [AUC] >0.9) exerted relatively high diagnostic efficiency, and the
combined diagnostic efficacy of 5 to 6 microbial-related differential metabolites was higher than the
diagnostic efficacy of a single feature. Therefore, microbial diversity and metabolite distribution
differed between the GC tissues and the NC tissues. Microbial-related metabolites may be involved in
eight major metabolism-based biological processes in GC and represent potential diagnostic markers.

Keywords: gastric cancer; 16S rRNA; metabolites; microbes; biomarker

1. Introduction

The microbiota serves an important role in the mucosa of the gastrointestinal tract [1–3].
Several studies have demonstrated that microbes cause DNA damage, promote tumorigen-
esis, and create a tumor-promoting environment by affecting the immune system [4,5]. In
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recent years, an increasing number of studies have focused on microbes in gastric cancer
(GC) and identified significant differences between GC tissues and those of other gastric
diseases [6–9]. Our previous studies showed that the microbiota in GC tissues and adja-
cent non-cancerous (NC) tissues differed in distribution, microbe diversity, and predicted
metabolic function. The more abundant microbiota in GC tissues may play important
roles in human biosynthesis, molecular decomposition, immune function, and disease
occurrence [10]. In stomach diseases, it is widely accepted that Helicobacter pylori (H. pylori)
plays an important role. However, only 3% of H. pylori-infected individuals eventually de-
velop GC [11]. Previous studies also pointed out the decreasing colonization of H. pylori in
the development of GC and the other bacterial contributions to GC progression [12,13].
Therefore, microbiota—other than only H. pylori—may play a more important role in GC.

Compared to other omics, changes in metabolomics could directly reflect the phys-
iological state of humans. With the development of omics technology in recent years,
non-targeted metabolomics has detected more metabolites, reflecting more relevant in-
formation. Metabolites associated with microbes regulate human immunity [14], inhibit
bacterial colonization [15], and promote pathogenicity [16], such as colorectal cancer tu-
morigenesis [17,18]. Therefore, the metabolic function of the microbiota may be more
important than its taxonomic composition [19]. Previous integrated analysis showed that
microbes act as biochemical converters to disrupt the metabolic balance in colorectal cancer
tissues [20]. Thus, the resulting metabolite changes establish an important connection
between cancer and intestinal microbes [17,18]. The metabolomic-integrated intestinal
microbes may also be immunotherapy biomarkers for colorectal cancer [19,21]. The mi-
crobiota changes in sterile mice, caused by injecting one or two bacteria, can affect the
metabolite composition in various organs [22,23]. In irritable bowel syndrome (IBS) and
inflammatory bowel disease (IBD), the integrated analysis of microbes and metabolites
determined the main microbial metabolic pathways involved in the occurrence of these
diseases [24,25]. In another study, the gut microbiota changes in HIV-infected patients were
closely related to plasma metabolism disorders [26].

Integrating microbe and metabolome research provides a direction for understand-
ing microbe-associated pathophysiological processes in metabolic change and disease
occurrence [15,27,28]. Currently, GC studies mostly focus on one kind of omics, either
mining the changes in the microbial community and abundance or exploring the differ-
ences in metabolites and metabolic pathways. Metabolites in serum or tissues, without the
involvement of microbes, might serve as biomarkers for identifying GC [29,30]. However,
there are no reports on the correlation between these two omics in GC.

The present study aimed to determine the microbial and metabolic characteristics
that mainly affected GC, using 16S rRNA and non-targeted metabolomics. Under the
differential analysis of microbes and metabolites, a neural network algorithm was utilized
to predict the response intensity of metabolites, given a single-input microbial sequence, in
order to predict the coexistence relationship between microbes and metabolites [31]. This
analysis provides directions for finding GC-related microbial and metabolic diagnostic
markers and a basis for further understanding the relationship between microbial and
metabolic functions in GC tissues, as well as a basis for exploring their coexistence and
interaction mechanisms.

2. Materials and Methods
2.1. Sample Collection

This study included 30 GC patients who underwent subtotal gastrectomy from June
2012 to June 2014 in the First Affiliated Hospital of China Medical University. The inclusion
and exclusion criteria were consistent with our previous research criteria [10]: 30 GC
tissues and paired NC tissues were obtained from 30 GC patients who underwent subtotal
gastrectomy; the patients had clear postoperative pathological diagnoses as advanced
and low-median differentiated gastric adenocarcinoma, via both hematoxylin and eosin
(H&E) staining and immunohistochemistry; patients who had received medical treatment
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(including probiotics, proton pump inhibitors, antibiotics, and H2 receptor antagonists)
within 1 month were excluded; patients who had received chemotherapy or radiotherapy
prior to the surgery were excluded. Fresh gastric mucosal tissues collected from the lesion
and normal distal sites were immediately frozen after the operation and stored at −80 ◦C.
The study was approved by the Ethics Committee of the First Affiliated Hospital of China
Medical University, and samples were collected with informed consent.

2.2. Process and Analysis of Metabolomics in GC and NC Tissues
2.2.1. Metabolite Extraction from Tissues

Tissues (100 mg) were pulverized with liquid nitrogen, then resuspended in 500 µL
80% prechilled methanol containing 0.1% formic acid. After vortexing thoroughly, the
samples were incubated on ice for 5 min and centrifuged at 15,000× g for 10 min at 4 ◦C. The
supernatant was diluted with LC-MS-grade water to a final concentration of 53% methanol,
transferred to a fresh Eppendorf tube, and centrifuged at 15,000× g for 10 min at 4 ◦C.
The supernatant was analyzed by LC-MS/MS [32]. A mixed sample of each experimental
sample with an equal volume was used as a quality control (QC) sample. A 53% methanol
aqueous solution containing 0.1% formic acid was used as a blank sample.

2.2.2. Untargeted Metabolome Analysis by LC-MS/MS

Metabolome analysis was performed by Novogene Co., Ltd. (Beijing, China) with a
Vanquish ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS/MS)
system (Thermo Fisher, Karlsruhe, Germany) coupled to an Orbitrap Q Exactive™ HF mass
spectrometer (Thermo Fisher, Germany). The separation was performed on a C18 Hypersil
Gold column (Thermo Fisher, Germany), using a 17-min linear gradient at an 0.2 mL/min
flow rate. The solvent gradient of the eluents for the positive polarity mode (eluent A:
0.1% formic acid in water; eluent B: methanol) and the negative polarity mode (eluent
A: 5 mM ammonium acetate, pH 9.0; eluent B: methanol) was set as follows: t = 0 min,
2% B; t = 1.5 min, 2% B; t = 12 min, 2–100% B; t = 14 min, 2–100% B; t = 14.1 min, 100–2%
B; t = 17 min, 2% B. The Q Exactive™ HF mass spectrometer was operated with a spray
voltage of 3.2 kV, a capillary temperature of 320 ◦C, a sheath gas flow rate of 40 arbitrary
units, and an aux gas flow rate of 10 arbitrary units. The scanning range for ion separation
was 70–1050 m/z, at a resolution of 60,000. An automatic gain control (AGC) of 3 × 106

with a maximum ion injection time of 100 ms was set for the Orbitrap parameters.

2.2.3. Data Processing and Metabolite Identification for the Metabolome Analysis

The raw data generated by UHPLC-MS/MS were processed by Compound Discov-
erer 3.1 (CD3.1, Thermo Fisher). Peak alignment, peak picking, and quantitation for each
metabolite were performed with the following parameters: retention time tolerance, 0.2 min;
actual mass tolerance, 5 ppm; signal intensity tolerance, 30%; signal/noise ratio, 3; mini-
mum intensity, 100,000 ppm. Peak intensities were normalized to the total spectral intensity
for predicting the molecular formula, based on additive ions, molecular ion peaks, and
fragment ions. The peaks were matched with the mzCloud (https://www.mzcloud.org/,
accessed on 28 April 2020), mzVault and MassList databases to obtain accurate qualitative
and relative quantitative metabolite results. Statistical analyses were performed using
the statistical software R (R version R-3.4.3), Python (Python 2.7.6 version), and CentOS
(CentOS release 6.6).

2.2.4. Metabolite Annotation, Screening, and Differential Metabolite Analysis

Metabolites were annotated using the HMDB database (https://hmdb.ca/metabolites,
accessed on 15 May 2020). Principal components analysis (PCA) and partial least squares
discriminant analysis (PLS-DA) were performed to obtain the overall distribution trend
of the tissues and differential metabolites using metaX, a flexible and comprehensive
software for processing metabolomics data. The t-test and PLS-DA were used to screen the

https://www.mzcloud.org/
https://hmdb.ca/metabolites
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differential metabolites coordinately with the filtered conditions of the variable importance
for the projection (VIP) > 1.0, fold change (FP) 2.0 or <0.5, and p < 0.05.

2.3. Sequencing and Analysis of the Microbiome in GC and NC Tissues
2.3.1. 16S rRNA Sequencing and Data Processing

Genomic DNA was extracted from the GC tissues and the NC tissues for the quality
inspection, amplification, and sequencing of the V4–V5 region of the 16S rRNA gene. After
sequencing, the raw data were split, intercepted, spliced, and filtered to obtain relatively
valid data. Genomic DNA extraction and gene sequencing were performed, as previously
described [10]. Subsequently, amplicon sequence variants (ASVs) data were obtained by
the DADA2 denoising method, using the QIIME 2 2020.2 platform. The microbes were
annotated by comparing the ASVs data to the Silva database, with 99% similarity [33,34].

2.3.2. Analysis of Microbial Diversity Differences and Differential Bacteria through 16S
rRNA Sequencing

The analysis of microbial diversity differences contained α and β diversity. The
α-diversity index (Richness, Chao1, phylogenetic diversity [PD] whole tree indices, Shan-
non, Simpson, and Pielou) results were calculated based on the ASVs data, using the R
language vegan package. The β-diversity metrics (weighted UniFrac, unweighted UniFrac,
Jaccard distance, and Bray–Curtis dissimilarity) were calculated using the QIIME 2 plat-
form q2-diversity plugin. The differences between the two groups were compared using
permutational multivariate analysis of variance (PERMANOVA) [35,36]. The t-test and
the linear discriminant analysis effect size (LEfSe) tool were used to screen the differential
microbes between the two groups, with the following filters: log2FC > 1, LDA (linear
discriminant analysis) > 2, and p < 0.05.

2.4. Microbe-Metabolite Correlation Analysis in GC and NC Tissues
2.4.1. The Overall Correlation Analysis of the Microbes and Metabolites

The correlation analysis of the microbes and metabolites was performed using the
M2IA website (http://m2ia.met-bioinformatics.cn/, accessed on 7 July 2020) [37], including
the Procrustes overall similarity analysis and the O2PLS model of matrix correlation analysis.

2.4.2. Coexistence Analysis of Differential Microbes and Metabolites

The coexistence relationship and the probability of the differential microbes and
metabolites between the GC tissues and the NC tissues were analyzed, using the microbe-
metabolite vector (mmvec) neural network algorithm [31]. The microbes that contributed
more to the richness of the metabolites were obtained by sorting, clustering, and visualizing
the microbe–metabolite interactions, using dimension reduction analysis.

2.4.3. Functional Enrichment Analysis of the Microbial-Related Metabolites

We used the Greengenes13.0 database to re-annotate the ASVs data to obtain microbe
abundance data for the microbial-related metabolic function prediction of the GC tissues
and the NC tissues. The metabolic prediction of the microbial community was performed
using PICRUSt2 software (v2.3.0-b) and the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database, and included the nearest sequenced taxon index accuracy test [38],
enrichment analysis of the KEGG metabolic pathways, and LefSe analysis of microbial
metabolic function differences. The metabolic function analysis of the differential metabo-
lites between the GC tissues and the NC tissues was performed using MetaboAnalyst
5.0 (https://www.metaboanalyst.ca/, accessed on 14 January 2021) through the KEGG
database. A metabolic pathway had significant enrichment when p < 0.05.

http://m2ia.met-bioinformatics.cn/
https://www.metaboanalyst.ca/
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2.5. Diagnostic Efficacy Analysis of Differential Microbial-Related Metabolites between GC and
NC Tissues

Based on the coexistence analysis between the microbes and the metabolites, the
receiver operating curve (ROC) was constructed to distinguish the differences in the
characteristics between the differential microbial-related metabolites between the GC tissues
and the NC tissues by the R language pROC package. Metabolites with AUC > 0.9 were
used as potential metabolite features for the random forest analysis. The random forest
model was constructed and trained to obtain their importance ranking for searching for the
most combination models that could distinguish the GC tissues from the NC tissues.

2.6. Statistical Analysis

For the microbial analysis, α-diversity differences were calculated by the Mann–Whitney
U test, using SPSS 25.0 software (SPSS Inc., Chicago, IL, USA). Differences in β-diversity
were calculated using PERMANOVA. In the analysis of differential bacteria and predicting
metabolic functions, the screening conditions satisfied log2FC > 1 and p < 0.05 for the t-test
and LDA > 2 and p < 0.05 for LEfSe. For the metabolite-associated analysis, the screening
conditions for the differential metabolites satisfied log2FC > 1 and p < 0.05 for the univariant
analysis and VIP > 1.0 and p < 0.05 for PLS-DA. The volcano map was drawn in R language.
Pearson correlation analysis was performed to predict the relationship between differential
metabolites. The metabolic pathway network analysis for the differential metabolites was
performed using Cytoscape. The ROC and the random model were constructed using the
R language. Graphs were drawn using Prism GraphPad 8.4.1 and R language. p < 0.05 was
considered statistically significant.

3. Results
3.1. General Sample Information

Thirty patients (eight women and 22 men, aged 40 to 83) with a pathological diagnosis
of GC were included in this study. The average age of these patients was 62 years (median
age 63 years). Fifteen patients used to smoke and 13 patients used to drink. All enrolled
patients provided signed informed consent (Supplementary Table S1).

3.2. The Metabolic Characteristics in the GC Tissues and the NC Tissues
3.2.1. The Overall Distribution of Metabolites in the GC Tissues and the NC Tissues

Based on non-targeted metabolomics by LC-MS/MS, we compared the molecular
feature peaks with the database to obtain metabolites, and we retained the metabolites
with a coefficient of variation of less than 30% in the QC samples. Then, we qualified
and quantified 496 negative and 863 positive ion metabolites in the GC tissues and the
NC tissues. Subsequently, the metabolites were annotated using the HMDB and KEGG
databases. In the HMDB database, 508 metabolites in 13 superclasses were annotated,
including organic compounds and lipid molecules (e.g., lipids, organic acids, and organic
heterocyclic compounds) (Figure 1A). In the KEGG database, these metabolites were
mainly involved in the overall metabolic process, including amino acid, lipid, vitamin, and
nucleotide metabolism (Figure 1B).

3.2.2. Differential Metabolites between the GC Tissues and the NC Tissues

Based on the metabolites and their categories annotated in the HMDB database, we
compared the overall distribution and differences in metabolites between the GC tissues
and the NC tissues. PCA analysis revealed that the overall metabolite distribution differed
between the two tissue types (Supplementary Figure S1). Based on the rank sum test,
there were 230 differential metabolites between the two groups (p < 0.05), including lipids,
alcohols, phenols, alkylamines, and organic acids (Table S2). PLS-DA analysis was then
performed to process data through dimensionality reduction, regression analysis, and
model creation to identify the differential metabolites with significant differences. The
results indicated that the model was not overfitting (Figure S1). After setting a strict
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screening threshold (VIP > 1.0, FC > 2.0 or FC < 0.5, p < 0.05), 25 metabolites were enriched
in the NC tissues and 42 metabolites were enriched in the GC tissues (Figure 2, Table 1).
These sixty-seven metabolites were correlated with GC; these metabolites were involved in
amino acid, fatty acid, nucleotide, and vitamin metabolism (Figure 3).
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Table 1. Differential metabolites between GC tissues and NC tissues, by PLS-DA analysis.

Name FC VIP

25 NC
metabolites

Monoolein 0.04 1.76
Palmitoleic acid 0.07 1.65

1-Palmitoylglycerol 0.11 1.56
Menaquinone 0.14 1.66

dihydrotachysterol 0.16 1.66
Sorbitan monostearate 0.18 1.71

cis-2-Decenoic acid 0.18 1.71
3-Hydroxylidocaine 0.2 1.12

Oleic acid 0.22 1.85
Lauric acid 0.24 1.67

Punicic Acid 0.25 1.96
Methyl palmitate 0.25 1.81

Muscone 0.26 1.44
7-Ketocholesterol 0.32 1.36

Lauric acid ethyl ester 0.34 1.19
3-Ketodihydrosphingosine 0.36 1.7

Propionyl-L-carnitine 0.36 1.67
1-Stearoylglycerol 0.38 1.26

10E,12Z-Octadecadienoic acid 0.41 1.4
Docosatrienoic acid 0.41 1.33

Thr-Leu 0.42 1.75
Jasmonic acid 0.44 1.34

Feruloylcholine 0.44 1.23
Biotin 0.45 1.14

Celestolide 0.47 1.24

42 GC
metabolites

2′-Deoxyinosine 2 1.1
N-Acetylmannosamine 2.02 1.67
N8-Acetylspermidine 2.02 1.55

Docosapentaenoic acid 2.06 1.6
N-Acetylneuraminic acid 2.06 1.38

Thymine 2.08 1.09
Adrenic acid 2.11 1.85

2-Aminoethanesulfinic Acid 2.17 1.22
Xanthine 2.19 1.26

Orotic Acid 2.26 1.22
Spermidine 2.3 1.36

Ouabain 2.33 1.13
N-Acetyl-DL-glutamic acid 2.35 1.38

Uric acid 2.37 1.11
2-Hydroxy-2-methylbutanedioic acid 2.38 1.16

L-Serine 2.4 1.41
Taurine 2.44 1.68

Xanthosine 2.51 1.3
gamma-Glutamylleucine 2.56 1.41

Aniline 2.59 2.06
trans-Aconitic acid 2.76 1.1

gamma-Glutamyltyrosine 2.82 1.43
N,N-Dimethylarginine 2.85 1.41

Imidazoleacetic acid 2.85 1.18
S-Adenosylhomocysteine 2.99 1.42
Thiamine Pyrophosphate 3.04 1.36
Pyrrole-2-carboxylic acid 3.1 1.63

P-Aminobenzoate 3.12 1.68
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Table 1. Cont.

Name FC VIP

L-Dopa 3.13 1.59
N1-Acetylspermine 3.25 1.58

Adenosine 3.25 1.48
Citrulline 3.28 1.28

Proline-hydroxyproline 3.42 1.61
Bilirubin 3.58 1.38

Phenylpyruvic acid 4.07 1.72
6-Methylnicotinamide 4.21 2.3

Lignoceric acid 4.24 2.75
Ascorbic acid 4.63 1.31
L-Kynurenine 5.04 1.69
L-Ascorbate 6.23 1.53

3-Phenyllactic acid 8.14 1.55
Glutaconic acid 9.49 1.15

FC, fold change; VIP, Variable Importance for the Projection.
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3.3. The Microbial Characteristics in GC Tissues and NC Tissues
3.3.1. The Overall Microbe Composition and Microbial Diversity in GC Tissues and
NC Tissues

The overall microbe composition was obtained using the Qiime2 microbiome bioin-
formatics platform, based on our previous 16S rRNA sequencing results. In GC tissues
and NC tissues, the enriched bacteria phyla included Proteobacteria, Firmicutes, Bacteroidetes,
and Epsilonbacteraeota (Figure S2). We calculated the differences in α and β diversity of the
microbes between the GC tissues and the NC tissues. Compared with the NC tissues, the
α diversity indexes (richness, Chao1 index, faith-PD_whole_tree, Shannon, Simpson, and
Pielou uniformity) in the GC tissues were higher, indicating a higher richness, diversity,
and genetic diversity (p < 0.05, Figure S3). After the visualization by Principal coordinates
analysis (PcoA), the β diversity distance metrics for the unweighted UniFrac (p = 0.001)
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and the Jaccard_distance (p = 0.001) showed statistical differences, indicating a difference
in microbial structure diversity between the GC tissues and the NC tissues (Figure S4).

3.3.2. Differential Microbes in GC Tissues and NC Tissues

Based on the microbial diversity results, we further analyzed the differential microbes
by phyla and genera, using the t-test and LEfSe. Eight bacterial phyla and 29 bacterial
genera were enriched in the GC tissues, compared to the NC tissues (Table S3). Using LEfSe,
we screened 11 differential phyla and 52 differential genera for the subsequent relevance
analysis with the metabolites (Figure 4).
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3.4. Correlation between Metabolites and Microbes in GC Tissues and NC Tissues
3.4.1. The Overall Correlation between Metabolites and Microbes

To explore the relationship between metabolomics and the microbiome in GC, Pro-
crustes analysis was performed to analyze the overall correlation between these two datasets
(1659 metabolites and all genera by 16S rRNA sequencing), showing an overall similarity
with no statistical significance (Figure 5A). After two-way modeling of the two omics
matrices by the O2PLS model, we found that the metabolomics data matrix was highly
correlated with the microbiome (r = 0.76, p < 0.05, Figure 5B), which provided a foundation
for further association analysis.
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Figure 5. The overall correlation between metabolites and microbes. (A) Procrustes analysis.
(B) O2PLS model.

3.4.2. The Coexistence of Metabolites and Microbes in GC Tissues and NC Tissues

To further explore the coexistence relationships between the metabolites and mi-
crobes and to find the microbial-related metabolites in the GC tissues and the NC tis-
sues, mmvec [31] analysis evaluated the conditional coexistence probability of differential
metabolites with specific differential microbes, using a neural network algorithm for discov-
ering the interaction distribution between differential metabolites and microbes. Differential
microbes (11 differential phyla and 52 differential genera) were obtained from the LEfSe
results, and differential metabolites (67 differential metabolites) were obtained from the
strict analysis of the PLS-DA and the rank sum test results. At the level of bacteria phyla,
Acidobacteria, Fusobacteria, Actinobacteria, Thaumarchaeota, Epsilonbacteraeota, and seven other
phyla existed simultaneously with each other and might coexist with 62 metabolites. At
the level of the bacteria genera, 21 genera (e.g., Actinomyces, Bacillus, Gemella, Prevotella, and
Helicobacter) might coexist with 63 differential metabolites. Of these differential metabolites,
only xanthosine had no coexistence relationship with any genus or phyla (Table S4). The
top five coexisting phyla and genera are shown in Figure 6 and Figure S5. The coexistence
probability of each metabolite and microbe is presented in Figure 7. The greater the positive
conditional probability value, the greater the probability of coexistence.
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Figure 6. The coexistence relationship of differential metabolites with differential microbes. (A) The
coexistence relationship of differential metabolites with differential phyla. (B) The coexistence rela-
tionship of differential metabolites with differential genus. Each figure showed the top 5 differential
microbes. Red points represent the enriched metabolites in GC tissues; blue points represent the
enriched metabolites in NC tissues. The smaller the angle between points and arrows, the greater the
possible coexistence relationship between microbes and metabolites.
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Figure 7. The coexistence probability of each differential metabolite and microbe. (A) The coexistence
probability of differential metabolite and differential phyla. (B) The coexistence probability of
differential metabolite and differential genus. The larger the positive log conditional probabilities,
the stronger the likelihood of co-occurrence between microbes and metabolites, while the low and
negative values indicated no relationship.
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3.4.3. Functional Enrichment of Microbial-Related Metabolites in GC Tissues and
NC Tissues

The differentially enriched microbial-related metabolites identified in GC tissues and
NC tissues participate in various metabolic pathways. We used MetaboAnalyst (https:
//www.metaboanalyst.ca/, accessed on 17 January 2021) to perform KEGG pathway
enrichment for 66 microbial-related metabolites highly enriched in the GC tissues and
the NC tissues. In the GC tissues, the main enriched pathways included taurine and
hypotaurine metabolism, purine metabolism, and arginine biosynthesis. The main enriched
pathways in the NC tissues included biotin metabolism, sphingolipid metabolism, and
unsaturated fatty acid biosynthesis (Figure 8). As the microbial communities may cause
pathway differences, we re-annotated the microbes with the Greengenes database to predict
the microbial-related metabolic functions, using PICRUSt2 (Figure S6). By comparing
the metabolic pathways predicted by the microbes and the pathways enriched by the
microbial-related metabolites, eight metabolic pathways appear to be regulated by the
microbes in GC (Table 2, Figure 9).
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Figure 8. The KEGG pathway enrichment analysis of 66 microbial-related metabolites. (A) The
KEGG pathway enrichment for microbial-related metabolites enriched in GC tissues. (B) The KEGG
pathway enrichment for microbial-related metabolites enriched in NC tissues.

Table 2. Microbial-related metabolites may be involved in eight major metabolism-based biological
processes in GC.

Microbial-Related Metabolic Functions Metabolites Enriched Pathways

ko00230 Purine metabolism
ko00730 Thiamine metabolism
ko00270 Cysteine and methionine metabolism
ko00240 Pyrimidine metabolism
ko00600 Sphingolipid metabolism
ko00010 Glycolysis/Gluconeogenesis
ko00970 Aminoacyl-tRNA biosynthesis
ko00520 Amino sugar and nucleotide sugar metabolism

3.5. Efficacy of Microbial-Related Differential Metabolites in the Diagnosis of GC

Based on the differences in metabolites between GC tissues and NC tissues, men-
tioned above, and the coexistence relationship between the metabolites and microbes,
microbial-related metabolites may represent early-warning markers for GC. Therefore,
we constructed an ROC model and calculated the AUC for microbial-related differential
metabolites: 12 differential metabolites (AUC > 0.9) had relatively high diagnostic efficiency
(Figure 10). Random forest analysis was used to model the microbial-related differential
metabolites with high diagnostic efficiency and to analyze the best diagnostic efficacy

https://www.metaboanalyst.ca/
https://www.metaboanalyst.ca/
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of various metabolite combinations. The metabolite features with a mean decrease accu-
racy (MDA) greater than 8 were selected as candidate features for constructing the ROC
and calculating the diagnostic efficacy with different combinations (Figure 11A,B). The
results suggested that the combined diagnostic efficacy of 5 to 6 microbial-related differen-
tial metabolites was higher than the diagnostic efficacy of a single feature (AUC = 0.999)
(Figure 11C).Cancers 2023, 15, x FOR PEER REVIEW  14  of  24 
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Figure 10. The ROC of microbial-related differential metabolites with high diagnostic efficiency
(AUC > 0.9). (A) Seven microbial-related differential metabolites enriched in GC tissues for diagnos-
ing GC. (B) Five microbial-related differential metabolites enriched in NC tissues for diagnosing NC.
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1 

 

 

Figure 11. The random forest and ROC of microbial-related differential metabolites in the diagnosis
of GC. (A) The random forest model. (B) The importance-ranking of microbial-related differential
metabolites. (C) The combined diagnostic efficacy of microbial-related differential metabolites. For
example, the number 6 represented the combined of top 6 microbial-related differential metabolites.

4. Discussion

In the present study, the microbial and metabolic characteristics of 30 GC tissues and
paired NC tissues were obtained through 16S rRNA gene and non-targeted metabolomics,
with analysis of quality inspection, database comparison, and annotation. Through
metabolomics analysis, we classified the overall characteristics of the metabolites in both
tissue types, identified the differential metabolites, and determined metabolic network
pathways for the two groups. Through Qiime2 microbiological analysis, we compared
the overall microbial characteristics and microbial diversity of the GC tissues and the
NC tissues and determined the differential microbes. Based on the characteristics of
the microbiomes and metabolomes, we used mmvec to obtain the coexistence probabil-
ity of differential microbes and metabolites and analyzed the metabolic functions of the
microbial-related metabolites. The microbial-related metabolites were analyzed to deter-
mine their diagnostic efficacy for GC. These analyses showed that the GC tissues were more
enriched in amino acids, organic acids, and some nucleotides, but less enriched in lipids,
with higher microbial diversity than that of NC tissues. There were also differentially
enriched microbes and metabolites in the GC tissues, with a high coexistence relationship.
Moreover, microbial-related metabolites might participate in eight main metabolism-based
biological processes that could be used as diagnostic markers for this disease. These results
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provide a basis for understanding the relationship and the interaction mechanism between
microbes and metabolic functions.

4.1. Differential Metabolites between GC Tissues and NC Tissues Participated in the Process of
Sugar, Amino Acid, Nucleotide, and Lipid Metabolism

As tissue/cell metabolism could affect biological organization, metabolites detected
in tissues were closer to phenotypes (e.g., cell morphology, tumor type, tumor occurrence
and development, genotype, and proteome) and could accurately and directly reflect the
occurrence of life activities. Previous metabolomics studies have suggested that certain
amino acids, organic acids, nucleotides, and lipids are increased in GC tissues [39–41].
The metabolites, which were qualified, quantitated, and annotated using non-targeted
LC-MS/MS metabolomics, were more extensive than they were in previous studies, and
contained more differential metabolites [39–44]. In the present study, the differential
metabolites between GC tissues and NC tissues were mainly involved in sugar, amino acid,
nucleotide, and lipid metabolism, providing directions for understanding the metabolic
changes in GC.

Although the present study found no changes in metabolites directly involved in
glycolysis, some changes were still related to sugar metabolism [39,40]. According to the
Warburg Effect, even under conditions of sufficient oxygen, tumor cells prefer the energy
supply from consuming glucose to generate ATP [45]. In addition to lactic acid, acetyl-CoA
produced by glycolysis can participate in energy metabolism via the tricarboxylic acid
(TCA) cycle. In our study, succinic semialdehyde (an intermediate metabolite for the
production of succinate) and fumaric acid (a precursor to L-malate), which are involved in
the TCA cycle, were both highly enriched in GC tissues; fumaric acid and malate were the
most detectable metabolites in other studies [40,42,43,46–48].

A previous study suggested that an amino acid metabolism disorder might be closely
related to the occurrence of GC [49], potentially caused by the upregulation of amino
acid transporters during protein catabolism and the degradation of the extracellular
matrix [47,50,51]. In the present study, due to the high enrichment of some protein hy-
drolysates (gamma-glutamylleucine and gamma-glutamyltyrosine) and protein modifica-
tion metabolites (N,N-dimethylarginine and dipeptides [proline-hydroxyproline]) in GC
tissues, we were more inclined to attribute the increase in amino acids to proteolysis. In
addition, differential amino acids, such as leucine, asparagine, phenylalanine, tyrosine,
proline, valine, threonine, glutamine, and proline, are also involved in the synthesis of the
intermediate products of energy metabolism in the TCA cycle [44].

For nucleotide metabolism, purines and pyrimidines (e.g., xanthine, adenosine, 2′-
deoxyinosine, thymine, and xanthosine), which are used to synthesize nucleotides [41,42],
were highly enriched in GC tissues in the present study. Uric acid enrichment (nucleotide
decomposition products) also provides evidence of active nucleotide metabolism [52,53].
Changes in amino acids (e.g., glutamine, glycine, and asparagine) cause an imbalance in
the de novo synthesis of purine and pyrimidine, providing favorable growth conditions for
cancer cells. The main manifestations of lipid metabolism in GC include the upregulation
of mitochondrial fatty acid β-oxidation, the main energy source [44]. In the present study, a
higher enrichment of acetylcarnitine in GC also suggested active fatty acid β-oxidation in
this disease. In addition, the oxidative degradation of lipids in GC causes increased levels
of 4-hydroxyphenylacetic acid [39]. Therefore, we speculated that GC cells had an increased
demand for lipids, due to both active cell proliferation and active β-oxidative degradation of
fatty acids, leading to decreased lipid levels and increased levels of oxidative decomposition
products in the GC tissues. In summary, our analysis suggested that, compared with normal
cells, GC cells had a better environment for proliferation, due to energy sources derived
from glycolysis and amino acid, nucleoside, and lipid metabolism.
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4.2. Metabolic Functions of Microbial-Related Metabolites

The changes in the metabolites and metabolic processes in GC tissues and NC tis-
sues were affected by many factors, including the microbial community. Therefore, we
performed microbial diversity analysis and differential microbial analysis to screen the
differential microbes and coexistence relationship correlation analysis of the microbes
and metabolites, to identify the microbial-related metabolites. The GC tissues showed a
richer flora distribution, higher genetic diversity, and a more complex microbial structure
than those of the NC tissues. Furthermore, changes in microbial communities in tissues
depend on the microbial distribution at each level [6,7,10,54]. In the present study, bac-
teria at the phyla (Thaumarchaeota, Acidobacteria, Actinobacteria, Bacteroidetes, Firmicutes,
and Fusobacteria) and genera (oral-related bacteria, such as Fusobacterium, Streptococcus,
and Prevotella) levels were highly enriched in the GC tissues, whereas Helicobacter was
enriched in the NC tissues. When the gastric mucosa has a different health status, the
colonization and interaction of microbes and the relationship between the microbes and the
host will change, resulting in differences in microbial diversity [8]. Therefore, the diversity
changes observed between GC tissues and NC tissues in the present study could affect
immune and metabolic processes [55,56]. Metabolic patterns in GC could be changed by
the enrichment of some specific bacteria, resulting in tumor progression [57]. Meanwhile,
microbiota could mediate drug resistance, resulting in metabolic disorders and influenc-
ing chemotherapy reactions [58,59]. In the analysis of the overall similarity between the
microbes and metabolites, the metabolites were outside of the microbes, due to the high
variability of the metabolites. In the correlation analysis of the two omics, the microbes
were highly correlated with the metabolites in the GC tissues. Indeed, more than 90% of
the differential metabolites could coexist with the specific differential bacteria, based on
mmvec neural network algorithm analysis. However, only seven phyla and 21 genera
coexisted with 66 differential metabolites. Therefore, the differential distribution of these
seven phyla and 21 genera between GC tissues and NC tissues was most likely closely
related to the differential metabolites.

We discovered eight microbial-related metabolic pathways through the intersection
analysis of microbial metabolic function prediction and metabolite enrichment analysis,
which mainly involved nucleotide and amino acid metabolic pathways. Based on the results
of this analysis, we speculated that metabolic biological processes in GC were affected by
those more enriched and major microbes by changing the metabolites of the amino acid and
nucleotide metabolism pathways. Among the eight microbial-related differential metabolite
enrichment pathways, those involved in the purine metabolism pathway belonged to
the purine nucleoside-related metabolites (xanthine, adenosine, and deoxyinosine) and
had different coexistence relationships with bacteria phyla. Previous studies suggested
that gut microbes may be related to purine metabolism [60]. Bacterial genome-related
studies also showed an asymmetry in the nucleotide composition of bacteria [61]. In the
present study, Firmicutes and Fusobacteria, which have coexistence relationships with purine-
related metabolites, showed obvious purine asymmetry (PAS) [62]. As a purine rescue
enzyme, xanthine phosphoribosyl transferase (XPRT) in Firmicutes and Bacteroidetes could
generate nucleotides from xanthine [63]. Therefore, we speculated that metabolites might
act as an intermediate bridge between microbes and hosts to participate in the normal
biological processes.

L-serine is a microbial-related metabolite involved in metabolism that may also play
an important role in GC. L-serine is also the main source for the de novo synthesis of
purine and deoxythymidine monophosphate during nucleotide metabolism and plays a
central role in cell proliferation, indicating that L-serine in GC tissues may be involved
in nucleotide metabolism to promote tumor cell proliferation. As a microbial-related
metabolite, L-serine may also be a coexisting metabolite of Acidobacteria, Actinobacteria, and
Firmicutes and participate in amino acid metabolism, such as the biosynthesis of aminoacyl
tRNA and the cysteine and methionine metabolic pathways. In Acidobacteria, tRNA can
function as regulatory non-coding RNA and amino acids, such as serine and cysteine, and
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can be effectively inserted into tRNA for subsequent biological activities. Twelve forms
of tRNA were observed after combining with amino acids. Among these tRNAs, tRNA
containing serine exists in Actinobacteria as tRNASec [64]. Therefore, the high enrichment
of L-serine in the GC tissues may have a role in bacterial tRNA synthesis, and influence
tissue metabolism by affecting the production of the corresponding amino acid. Therefore,
if we start from the coexistence relationship between the microbes and metabolites, through
the metabolic pathways involving microbial-related metabolites, we can uncover more
information about microbial metabolism in GC tissues, predict the possible regulatory
processes involving bacterial metabolic function, and perform a more in-depth molecular
mechanism study combined with the current research on bacterial genomes.

4.3. The Diagnostic Potential of Microbial-Related Metabolites in GC

The present study evaluated the potential of microbial-related metabolites in diag-
nosing GC and found that 12 of these metabolites had an AUC over 0.9. The combination
of the top six metabolites (6-methylnicotinamide, aniline, L-kynurenine, and lignoceric
acid were highly enriched in GC; methyl palmitate and oleic acid were highly enriched in
NC) in the random forest importance-ranking had higher diagnostic efficiency than that of
each metabolite alone. Aniline, a metabolite coexisting with all seven bacteria phyla, was
highly enriched in GC and had the potential to diagnose GC with an AUC as high as 0.97,
which may be closely related to its carcinogenicity and mutagenicity [65,66]. L-kynurenine
had a high coexistence probability with four bacteria phyla (Actinobacteria, Bacteroidetes,
Epsilonbacteraeota, and Firmicutes), and previous studies demonstrated that it promotes
tumor cell growth and migration [67]. In lung cancer, lignoceric acid can be used as a
diagnostic marker [68,69]. In GC tissues, the low-enriched oleic acid may be associated
with the decrease in lipids caused by tumor consumption or cachexia [39,40,46,70,71]. In
mouse experiments, oleic acid levels were related to an imbalance in microbial distribution:
with a high intake of oleic acid, the ratio of the bacteria phyla Firmicutes and Bacteroidetes
decreased [72]. Therefore, oleic acid, a coexisting metabolite with many phyla (including
Firmicutes and Bacteroidetes) in the present study, could be used as a diagnostic marker
for GC. In general, microbial-related metabolites obtained in the present study provided
excellent prediction efficiency. However, more validation about diagnostic efficiency com-
parison between microbial-related metabolites and other known markers for GC would be
more convincing.

In summary, based on the random forest prediction and the ROC curve, we specu-
late that highly differential microbial-related metabolites have the potential to diagnose
GC; the combination of six microbial-related metabolites (6-methylnicotinamide, aniline,
L-kynurenine, lignoceric acid, methyl palmitate, and oleic acid) had a high diagnostic
efficiency for GC, close to 0.999. Our research provided new insights into microbial-related
metabolites and their potential role in diagnosing GC. Changes in microbial-related metabo-
lites and their clinical evaluation and application as diagnostic markers must be further explored.

5. Conclusions and Limitations

Microbial diversity and metabolite distribution were different between the GC tis-
sues and the NC tissues. There were 66 microbial-related metabolites. Microbial-related
metabolites may involve eight major metabolism-based biological processes in GC and
represent potential diagnostic markers for this disease. However, the present study had
some limitations. More in vitro validation about the relationship between these differ-
ential microorganisms and differential metabolites, more detection about alterations in
microbial-related metabolic pathways, and more diagnostic efficiency comparison between
microbial-related metabolites and other known markers for GC would be more convincing.
In addition, we could not determine whether these metabolites are products of microbes
or whether the metabolites change is influenced by microbes through current sequencing
technology. Therefore, we predicted the coexistence probability to make predictions as
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reasonable as possible. We believe these challenges will be addressed with the development
of new sequencing technology in the near future.
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